25.03.2024

Работа сил электростатического поля по перемещению заряда формула. III. Основы электродинамики. Использование электрического поля в медицине


На любой заряд, который находится в электрическом поле, воздействует сила. В связи с этим при передвижении заряда в поле происходит определенная работа электрического поля. Как же произвести расчет этой работы?

Работа электрического поля состоит в переносе электрозарядов вдоль проводника. Она будет равняться произведению напряжения, и времени, потраченного на работу.

Применив формулу закона Ома, мы можем получить несколько различных вариантов формулы для проведения подсчета работы тока:

A = U˖I˖t = I²R˖t = (U²/R)˖t.

В соответствии с законом сохранения энергии работа электрического поля равняется изменению энергии отдельно взятого участка цепи, в связи с чем энергия, выделяемая проводником, будет равняться работе тока.

Выразим в системе СИ:

[А] = В˖А˖с = Вт˖с = Дж

1 кВт˖час = 3600000 Дж.

Проведем опыт. Рассмотрим передвижение заряда в одноименном поле, которое образовано двумя параллельно расположенными пластинами А и В и заряженными разноименными зарядами. В таком поле силовые линии на всем своем протяжении перпендикулярны этим пластинам, и когда пластина А будет заряжена положительно, тогда Е будет направлена от А к В.

Предположим, что позитивный заряд q передвинулся из точки a в точку b по произвольному пути ab = s.

Так как сила, которая действует на заряд, который находится в поле, будет равняться F = qE, то работа, совершенная при передвижении заряда в поле согласно заданному пути, определится по равенству:

A = Fs cos α, или A = qFs cos α.

Но s cos α = d, где d - дистанция между пластинами.

Отсюда следует: A = qEd.

Допустим, теперь заряд q переместится из a и b по сути acb. Работа электрического поля, совершенная на этом пути, равняется сумме работ, совершенных на отдельных участках его: ac = s₁, cb = s₂, т.е.

A = qEs₁ cos α₁ + qEs₂ cos α₂,

A = qE(s₁ cos α₁ + s₂ cos α₂,).

Но s₁ cos α₁ + s₂ cos α₂ = d, а значит, и в данном случае A = qEd.

Кроме того, предположим, что заряд q передвигается из a в b по произвольной кривой линии. Чтобы подсчитать работу, совершенную на данном криволинейном пути, необходимо расслоить поле между пластинами А и В некоторым количеством которые будут настолько близки одна к другой, что отдельные участки пути s между данными плоскостями можно будет считать прямыми.

В таком случае работа электрического поля, произведенная на каждом из данных отрезков пути, будет равняться A₁ = qEd₁, где d₁ - дистанция между двумя сопредельными плоскостями. А полная работа на всем пути d будет равняться произведению qE и суммы расстояний d₁, равной d. Таким образом, и в результате криволинейного пути совершенная работа будет равняться A = qEd.

Примеры, рассмотренные нами, показывают, что работа электрического поля по перемещению заряда из какой-либо точки в другую не зависит от формы пути передвижения, а зависит исключительно от положения данных точек в поле.

Кроме того, мы знаем, что работа, которая совершается силой тяжести при передвижении тела по наклонной плоскости, имеющей длину l, будет равняться работе, которую совершает тело при падении с высоты h, и высоте наклонной плоскости. Значит, работа или, в частности, работа при передвижении тела в поле тяжести, тоже не зависит от формы пути, а зависит только от разности высот первой и последней точек пути.

Так можно доказать, что таким важным свойством может обладать не только однородное, а и всякое электрическое поле. Похожим свойством обладает и сила тяжести.

Работа электростатического поля по перемещению точечного заряда из одной точки в другую определяется линейным интегралом:

A₁₂ = ∫ L₁₂q (Edl),

где L₁₂ - траектория движения заряда, dl - бесконечно малое перемещение вдоль траектории. Если контур замкнутый, то для интеграла используется символ ∫; в этом случае предполагается, что выбрано направление обхода контура.

Работа электростатических сил не зависит от формы пути, а только лишь от координат первой и последней точек перемещения. Следовательно, силы поля консервативны, а само поле - потенциально. Стоит отметить, что работа любой по замкнутому пути будет равняться нулю.

На электрические заряды в электростатическом поле действуют силы. Поэтому, если заряды перемещаются, то эти силы совершают работу. Рассчитаем работу сил однородного электростатического поля при перемещении положительного заряда q из точки A в точку B (рис. 1).

На заряд q , помещенный в однородное электрическое поле с напряженностью E , действует сила \(~\vec F = q \cdot \vec E \). Работу поля можно рассчитать по формуле

\(~A_{AB} = F \cdot \Delta r \cdot \cos \alpha,\)

где Δr ⋅cos α = AC = x 2 x 1 = Δx - проекция перемещения на силовую линию (рис. 2).

\(~A_{AB} = q \cdot E \cdot \Delta x. \ \ (1)\)

Рассмотрим теперь перемещение заряда по траектории ACB (см. рис. 1). В этом случае работа однородного поля может быть представлена как сумма работ на участках AC и CB :

\(~A_{ACB} = A_{AC} + A_{CB} = q \cdot E \cdot \Delta x + 0 = q \cdot E \cdot \Delta x\)

(на участке CB работа равна нулю, т.к. перемещение перпендикулярна силе \(~\vec F \)). Как видно, работа поля такая же, как и при перемещении заряда по отрезку AB .

Не сложно доказать, что работа поля при перемещении заряда между точками AB по любой траектории будет находиться все по той же формуле 1.

Таким образом,

  • работа по перемещению заряда в электростатическом поле не зависит от формы траектории, по которой двигался заряд q, а зависит только от начального и конечного положений заряда .
  • Это утверждение справедливо и для неоднородного электростатического поля.

Найдем работу на замкнутой траектории ABCA :

\(~A_{ABCA} = A_{AB} + A_{BC} + A_{CA} = q \cdot E \cdot \Delta x + 0 - q \cdot E \cdot \Delta x = 0.\)

Поле, работа сил которого не зависит от формы траектории и на замкнутой траектории равна нулю, называется потенциальным или консервативным .

Потенциал

Из механики известно, что работа консервативных сил связана с изменением потенциальной энергии. Система "заряд - электростатическое поле" обладает потенциальной энергией (энергией электростатического взаимодействия). Поэтому, если не учитывать взаимодействие заряда с гравитационным полем и окружающей средой, то работа, совершаемая при перемещении заряда в электростатическом поле, равна изменению потенциальной энергии заряда, взятому с противоположным знаком:

\(~A_{12} = -(W_{2} - W_{1}) = W_{1} - W_{2} . \)

Сравнивая полученное выражение с уравнением 1, можно сделать вывод, что

\(~W = -q \cdot E \cdot x, \)

где x - координата заряда на ось 0Х, направленную вдоль силовой линии (см. рис. 1). Так как координата заряда зависит от выбора системы отсчета, то и потенциальная энергия заряда так же зависит от выбора системы отсчета.

Если W 2 = 0, то в каждой точке электростатического поля потенциальная энергия заряда q 0 равна работе, которая была бы совершена при перемещении заряда q 0 из данной точки в точку с нулевой энергией.

Пусть электростатическое поле создано в некоторой области пространства положительным зарядом q . Будем помещать в некоторую точку этого поля различные пробные заряды q 0 . Потенциальная энергия их различна, но отношение \(~\dfrac{W}{q_0} = \operatorname{const}\) для данной точки поля и служит характеристикой поля, называемой потенциалом поля φ в данной точке.

  • Потенциал электростатического поля φ в данной точке пространства - скалярная физическая величина, равная отношению потенциальной энергии W , которой обладает точечный заряд q в данной точке пространства, к величине этого заряда:
\(~\varphi = \dfrac{W}{q} .\)

Единицей потенциала в СИ является вольт (В): 1 В = 1 Дж/Кл.

  • Потенциал - это энергетическая характеристика поля.

Свойства потенциала.

  • Потенциал, как и потенциальная энергия заряда, зависит от выбора системы отсчета (нулевого уровня). В технике за нулевой потенциал выбирают потенциал поверхности Земли или проводника, соединенного с землей. Такой проводник называют заземленным . В физике за начало отсчета (нулевой уровень) потенциала (и потенциальной энергии) принимается любая точка, бесконечно удаленная от зарядов, создающих поле.
  • На расстоянии r от точечного заряда q , создающего поле, потенциал определяется формулой
\(~\varphi = k \cdot \dfrac{q}{r}.\)
  • Потенциал в любой точке поля, создаваемого положительным зарядом q , положителен , а поля, создаваемого отрицательным зарядом, отрицателен: если q > 0, то φ > 0; если q < 0, то φ < 0.
  • Потенциал поля, образованного равномерно заряженной проводящей сферой радиусом R , в точке, находящейся на расстоянии r от центра сферы \(~\varphi = k \cdot \dfrac{q}{R}\) при r R и \(~\varphi = k \cdot \dfrac{q}{r}\) при r > R .
  • Принцип суперпозиции : потенциал φ поля, созданного системой зарядов, в некоторой точке пространства равен алгебраической сумме потенциалов, создаваемых в этой точке каждым зарядом в отдельности:
\(~\varphi = \varphi_1 + \varphi_2 + \varphi_3 + ... = \sum_{i=1}^n \varphi_i .\)

Зная потенциал φ поля в данной точке, можно рассчитать потенциальную энергию заряда q 0 помещенного в эту точку: W 1 = q 0 ⋅φ. Если положить, что вторая точка находится в бесконечности, т.е. W 2 = 0, то

\(~A_{1\infty} = W_{1} = q_0 \cdot \varphi_1 .\)

Потенциальная энергия заряда q 0 в данной точке поля будет равна работе сил электростатического поля по перемещению заряда q 0 из данной точки в бесконечность. Из последней формулы имеем

\(~\varphi_1 = \dfrac{A_{1\infty}}{q_0}.\)

  • Физический смысл потенциала : потенциал поля в данной точке численно равен работе по перемещению единичного положительного заряда из данной точки в бесконечность.

Потенциальная энергия заряда q 0 помещенного в электростатическое поле точечного заряда q на расстоянии r от него,

\(~W = k \cdot \dfrac{q \cdot q_0}{r}.\)

  • Если q и q 0 - одноименные заряды, то W > 0, если q и q 0 - разные по знаку заряды, то W < 0.
  • Отметим, что по этой формуле можно рассчитать потенциальную энергию взаимодействия двух точечных зарядов, если за нулевое значение W выбрано ее значение при r = ∞.

Разность потенциалов. Напряжение

Работа сил электростатического поля по перемещению заряда q 0 из точки 1 в точку 2 поля

\(~A_{12} = W_{1} - W_{2} .\)

Выразим потенциальную энергию через потенциалы поля в соответствующих точках:

\(~W_{1} = q_0 \cdot \varphi_1 , W_{2} = q_0 \cdot \varphi_2 .\)

\(~A_{12} = q_0 \cdot (\varphi_1 - \varphi_2) .\)

Таким образом, работа определяется произведением заряда на разность потенциалов начальной и конечной точек.

Из этой формулы разность потенциалов

\(~\varphi_1 - \varphi_2 = \dfrac{A_{12}}{q_0} .\)

  • Разность потенциалов - это скалярная физическая величина, численно равная отношению работы сил поля по перемещению заряда между данными точками поля к этому заряду.

В СИ единицей разности потенциалов является вольт (В).

  • 1 В - разность потенциалов между двумя такими точками электростатического поля, при перемещении между которыми заряда в 1 Кл силами поля совершается работа в 1 Дж.

Разность потенциалов в отличие от потенциала не зависит от выбора нулевой точки. Разность потенциалов φ 1 - φ 2 часто называют электрическим напряжением между данными точками поля и обозначают U :

\(~U = \varphi_1 - \varphi_2 .\)

  • Напряжение между двумя точками поля определяется работой сил этого поля по перемещению заряда в 1 Кл из одной точки в другую.

Работу сил электрического поля иногда выражают не в джоулях, а в электронвольтах .

  • 1 эВ равен работе, совершаемой силами поля при перемещении электрона (е = 1,6·10 -19 Кл) между двумя точками, напряжение между которыми равно 1 В.
1 эВ = 1,6·10 -19 Кл·1 В = 1,6·10 -19 Дж. 1 МэВ = 10 6 эВ = 1,6·10 -13 Дж.

Разность потенциалов и напряженность

Рассчитаем работу, совершаемую силами электростатического поля при перемещении электрического заряда q 0 из точки с потенциалом φ 1 в точку с потенциалом φ 2 однородного электрического поля.

С одной стороны работа сил поля \(~A = q_0 \cdot (\varphi_1 - \varphi_2)\).

С другой стороны работа по перемещению заряда q 0 в однородном электростатическом поле \(~A = q_0 \cdot E \cdot \Delta x\).

Приравнивая два выражения для работы, получим:

\(~q_0 \cdot (\varphi_1 - \varphi_2) = q_0 \cdot E \cdot \Delta x, \;\; E = \dfrac{\varphi_1 - \varphi_2}{\Delta x},\)

где Δx - проекция перемещения на силовую линию.

Эта формула выражает связь между напряженностью и разностью потенциалов однородного электростатического поля. На основании этой формулы можно установить единицу напряженности в СИ: вольт на метр (В/м).

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 228-233.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. - 2-е изд., исправленное. - Минск: Нар. асвета, 2008. - С. 86-95.

Теперь известно, что на заряд, помещенный в электрическое поле, действует сила. Следовательно, перемещение заряда в элек­трическом поле будет сопровождаться работой

dA > 0 в случае, если работа совершается силами поля;

dA < 0 в случае, если работа совершается внешними силами против сил поля.

Рассмотрим перемещение пробного заряда Q 0 из точки 1 в точку 2 в поле сил, создаваемых зарядом Q.

Поле сил – центральное (рис. 73). Работа на пути dl будет равна

Отсюда работа по перемещению заряда из точки 1 в точку 2

Если работа совершается внешними силами, то

Электростатическое поле является потенциальным. Это значит, что работа по перемещению заряда не зависит от пути, по которому перемещается заряд, а зависит только от начального и конечного положения заряда.

Тело, находящееся в потенциальном поле сил, обладает по­тенциальной энергией, за счет которой совершается работа силами поля. Следовательно, полученное выражение для работы можно представить как разность потенциальных энергий заряда Q 0 в поле сил, созданном зарядом Q

Таким образом, потенциальная энергия в каждой точке поля зависит от величины пробного заряда Q 0 . Но если взять отношение W/Q 0 , то оно будет зависеть только от точки поля, и не будет зависеть от величины помещенного в эту точку за­ряда. Отношение = φ называют потенциалом поля.

Потенциалом электрического поля называется физическая величина, равная отношению потенциальной энергии, которую приобретает положи­тельный заряд Q 0 , если его переместить из в данную точку поля, к величине этого заряда

.

Из равенства А 12 = -А 21 следует другое определение.

Потенциалом поля называется физическая величина, чис­ленно равная работе, которую совершают силы поля над единичным положительным зарядом, при удалении его из данной точки поля в бесконечность.

Потенциал – величина скалярная. При суперпозиции (нало­жении) электрических полей потенциал суммарного электрического поля определяется как алгебраическая сумма потенциалов налагае­мых полей

Выражение для работы по перемещению заряда из точки с потен­циалом φ 1 в точку с потенциалом φ 2 имеет вид

A 12 = Q (φ 2 – φ 1).

Работа измеряется в Дж или эВ. 1эВ = 1,6 ∙10 -19 Дж.

Для наглядного изображения поля вместо линий напряжен­ности (силовых линий) можно воспользоваться поверхностями рав­ного потенциала или эквипотенциальными поверхностями. Экви­потенциальная поверхность – это такая поверхность, все точки которой имеют одинаковый потенциал. Если потенциал задан как функция координат x, y, z, то уравнение эквипотенциальной поверхности имеет вид:

φ (x,y,z) = const.

Эквипотенциальные линии – линии, образующиеся от пересечения эквипотенциальной поверхности плоскостью проводятся так, что направление нормали к ним совпадает с направлением вектора в той же точке (рис.74).

Эквипотенциальную поверхность можно провести через лю­бую точку поля. Следовательно, таких поверхностей может быть бесконечное множество.

Условились, однако, проводить их таким образом, чтобы разность потенциалов для двух соседних эквипотенциальных по­верхностей была всюду одна и та же. Тогда по их густоте можно судить о величине напряженности поля.

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Электрический заряд q - физическая величина, определяющая интенсивность электромагнитного взаимодействия.

[q] = l Кл (Кулон).

Атомы состоят из ядер и электронов. В состав ядра входят положительно заряженные протоны и не имеющие заряда нейтроны. Электроны несут отрицательный заряд. Количество электронов в атоме равно числу протонов в ядре, поэтому в целом атом нейтрален.

Заряд любого тела: q = ±Ne , где е = 1,6*10 -19 Кл - элементарный или минимально возможный заряд (заряд электрона), N - число избыточных или недостающих электронов. В замкнутой системе алгебраическая сумма зарядов остается постоянной:

q 1 + q 2 + … + q n = const.

Точечный электрический заряд - заряженное тело, размеры которого во много раз меньше расстояния до другого наэлектризованного тела, взаимодействующего с ним.

Закон Кулона

Два неподвижных точечных электрических заряда в вакууме взаимодействуют с силами, направленными по прямой, соединяющей эти заряды; модули этих сил прямо пропорциональны произведению зарядов и обратно пропорциональны квадрату расстояния между ними:

Коэффициент пропорциональности

где - электрическая постоянная.

где 12 - сила, действующая со стороны второго заряда на первый, а 21 - со стороны первого на второй.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ. НАПРЯЖЕННОСТЬ

Факт взаимодействия электрических зарядов на расстоянии можно объяснить наличием вокруг них электрического поля - материального объекта, непрерывного в пространстве и способного действовать на другие заряды.

Поле неподвижных электрических зарядов называют электростатическим.

Характеристикой поля является его напряженность.

Напряженность электрического поля в данной точке - это вектор, модуль которого равен отношению силы, действующей на точечный положительный заряд, к величине этого заряда, а направление совпадает с направлением силы.

Напряженность поля точечного заряда Q на расстоянии r от него равна

Принцип суперпозиции полей

Напряженность поля системы зарядов равна векторной сумме напряженностей полей каждого из зарядов системы:

Диэлектрическая проницаемость среды равна отношению напряженностей поля в вакууме и в веществе:

Она показывает во сколько раз вещество ослабляет поле. Закон Кулона для двух точечных зарядов q и Q , расположенных на расстоянии r в среде c диэлектрической проницаемостью:

Напряженность поля на расстоянии r от заряда Q равна

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА В ОДНОРОДНОМ ЭЛЕКТРО-СТАТИЧЕСКОМ ПОЛЕ

Между двумя большими пластинами, заряженными противоположными знаками и расположенными параллельно, поместим точечный заряд q .

Так как электрическое поле между пластинами с напряженностью однородное, то на заряд во всех точках действует сила F = qE , которая при перемещении заряда на расстояние вдоль совершает работу

Эта работа не зависит от формы траектории, то есть при перемещении заряда q вдоль произвольной линии L работа будет такой же.

Работа электростатического поля по перемещению заряда не зависит от формы траектории, а определяется исключительно начальным и конечным состояниями системы. Она, как и в случае с полем сил тяжести, равна изменению потенциальной энергии, взятому с противоположным знаком:

Из сравнения с предыдущей формулой видно, что потенциальная энергия заряда в однородном электростатическом поле равна:

Потенциальная энергия зависит от выбора нулевого уровня и поэтому сама по себе не имеет глубокого смысла.

ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И НАПРЯЖЕНИЕ

Потенциальным называется поле, работа которого при переходе из одной точки поля в другую не зависит от формы траектории. Потенциальными являются поле силы тяжести и электростатическое поле.

Работа, совершаемая потенциальным полем, равна изменению потенциальной энергии системы, взятой с противоположным знаком:

Потенциал - отношение потенциальной энергии заряда в поле к величине этого заряда:

Потенциал однородного поля равен

где d - расстояние, отсчитываемое от некоторого нулевого уровня.

Потенциальная энергия взаимодействия заряда q с полем равна .

Поэтому работа поля по перемещению заряда из точки с потенциалом φ 1 в точку с потенциалом φ 2 составляет:

Величина называется разностью потенциалов или напряжением.

Напряжение или разность потенциалов между двумя точками - это отношение работы электрического поля по перемещению заряда из начальной точки в конечную к величине этого заряда:

[U]=1Дж/Кл=1В

НАПРЯЖЕННОСТЬ ПОЛЯ И РАЗНОСТЬ ПОТЕНЦИАЛОВ

При перемещении заряда q вдоль силовой линии электрического поля напряженностью на расстояние Δ d поле совершает работу

Так как по определению, то получаем:

Отсюда и напряженность электрического поля равна

Итак, напряженность электрического поля равна изменению потенциала при перемещении вдоль силовой линии на единицу длины.

Если положительный заряд перемещается в направлении силовой линии, то направление действия силы совпадает с направлением перемещения, и работа поля положительна:

Тогда , то есть напряженность направлена в сторону убывания потенциала.

Напряженность измеряют в вольтах на метр:

[E]=1 B/м

Напряженность поля равна 1 В/м, если напряжение между двумя точками силовой линии, расположенными на расстоянии 1 м, равна 1 В.

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ

Если независимым образом измерять заряд Q , сообщаемый телу, и его потенциал φ, то можно обнаружить, что они прямо пропорциональны друг другу:

Величина С характеризует способность проводника накапливать электрический заряд и называется электрической емкостью. Электроемкость проводника зависит от его размеров, формы, а также электрических свойств среды.

Электроёмкостъ двух проводников - отношение заряда одного из них к разности потенциалов между ними:

Емкость тела равно 1 Ф , если при сообщении ему заряда 1 Кл оно приобретает потенциал 1 В.

КОНДЕНСАТОРЫ

Конденсатор - два проводника, разделенные диэлектриком, служащие для накопления электрического заряда. Под зарядом конденсатора понимают модуль заряда одной из его пластин или обкладок.

Способность конденсатора накапливать заряд характеризуется электроемкостью, которая равна отношению заряда конденсатора к напряжению:

Емкость конденсатора равна 1 Ф, если при напряжении 1 В его заряд равен 1 Кл.

Емкость плоского конденсатора прямо пропорциональна площади пластин S , диэлектрической проницаемости среды, и обратно пропорциональна расстоянию между пластинами d :

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА.

Точные эксперименты показывают, что W=CU 2 /2

Так как q = CU , то

Плотность энергии электрического поля

где V = Sd - объем, занимаемый полем внутри конденсатора. Учитывая, что емкость плоского конденсатора

а напряжение на его обкладках U=Ed

получаем:

Пример. Электрон, двигаясь в электрическом поле из точки 1 через точку 2, увеличил свою скорость от 1000 до 3000 км/с. Определите разность потенциалов между точками 1 и 2.

Электрическим полем является векторная диаграмма поля, возникающая возле электрически заряженных тел и частиц при изменении электромагнитного поля. Такое явление, как работу электростатического поля при перемещении в проводнике заряда, невозможно увидеть. Его можно проследить при воздействии на заряженные тела. То есть, чтобы оно появилось, необходимо приложить к ним электрический заряд. Главными параметрами электрически заряженного поля являются напряжение, потенциал и напряженность.

Физическое объяснение потенциала

На простом языке потенциал – это действие по переведению какого-либо тела из начального места в конечный пункт размещения. В электрическом поле – это энергия, двигающая электрон, в результате он перемещается с точки нулевого потенциала в другую точку, имеющую потенциал, не равный нулю.

Чем выше потенциал, потраченный на передвижение заряда, тем значительнее плотность потока на единице площади. Это явление можно сравнивать с законом гравитации: чем больше вес, тем выше энергия, а, значит, значительная плотность гравитационного поля.

В природе существуют заряды с незначительным потенциалом и с низкой степенью плотности, а также заряженные частицы с высоким потенциалом и насыщенной плотностью потока. Такое явление, как работа по перемещению заряда, наблюдается при грозе, когда в одном месте происходит истощение на электроны, а в другом – их насыщение, образовывающее такое электрически заряженное поле, когда происходит разряд в виде молнии.

Образование электрического поля и его особенности

Электрическое поле образовывается в таких случаях:

  • при изменениях в электромагнитном поле (например, при электромагнитных колебаниях);
  • при появлении заряженных частиц.

Электрически насыщенное поле проявляет на заряженные частицы определенное энергетическое влияние. Но эта сила не способна ускорять заряженные тела в пространстве. Кроме этого на них действует энергия магнитного поля.

Работа электростатического поля легко наблюдается в бытовой обстановке. Для этого достаточно взять какой-либо диэлектрический материал и потереть им об шерсть. Например, взять пластмассовую ручку и потереть об волосы. Результатом такого действия будет образование электрического поля вокруг ручки и появление заряда.

Из этого можно выработать вывод, что электрически насыщенное поле – это характерное состояние материи. Его основная функция – это силовое воздействие на заряженную частицу. Кроме этого оно владеет такими свойствами:

  • набирает силу при усилении заряда;
  • воздействует на заряженные частицы с определенной силой и не имеет границ;
  • обнаруживается в процессе воздействия на заряженную часть материи.

Если заряды не подвижные, то такое электрически заряженное поле называется электростатическим. Его главное свойство – это не изменяемое во времени заряженное состояние, так как поле образуется за счет заряженных тел (пример с ручкой и волосами).

Понятие однородного электрического поля

Однородное электрически заряженное поле создается между двумя плоскими пластинами, имеющими разноименный заряд. У них линии напряженности имеют параллельную структуру.

Благодаря симметрическому свойству, электрическое поле оказывает одинаковое силовое воздействие на заряженные частицы. Работу такого электрического поля можно измерить без каких-либо зависимостей.

Энергия по перемещению положительно заряженной частицы

Электрически насыщенным полем можно назвать лавину заряженных частиц от плюса к минусу. Такое перемещение создает высокую степень напряженности в области потока. Потоком называется совокупность черт движения электронов, проходящих внутри электрического поля. Заряженные частицы двигаются всегда от положительно заряженного полюса к отрицательному заряженному полюсу.

Интенсивность воздействия поля на заряд в любой области определяется силой, действующей на заряженную частицу, помещенную в эту область электрически заряженного поля. Сама работа заключается в затраченной энергии для перемещения заряда в структуре проводника. Это действие можно найти с помощью закона Ома.

При перемещении заряда в электрическом поле он в разных областях:

  • остается неизменным;
  • уменьшается;
  • увеличивается.

Энергия электрически насыщенного поля и потенциал частицы, имеющей определенный заряд, имеет пропорциональность к уровню самого заряда. Отношение потенциала заряженной частицы к ее заряду именуют потенциалом электрически заряженного поля в выбранной области.

На частицу, имеющую заряд, в электрически насыщенном поле влияет сила этого электрически заряженного поля. Эта сила создает энергию для передвижения заряженной частицы в самом поле. Большой заряд имеет большой потенциал.

Видео