25.03.2024

Рисунке изображены график некоторой функции


Показывающая связь знака производной с характером монотонности функции.

Пожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции или ее производной

Если дан график производной , то интересовать нас будут только знаки функции и нули. Никакие «холмики» и «впадины» не интересуют нас в принципе!

Задача 1.

На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.


Решение:

На рисунке выделены цветом области убывания функции :


В эти области убывания функции попадает 4 целые значения .


Задача 2.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой (или, что тоже самое, ), имеющей угловой коэффициент , равный нулю, то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что касательная параллельна оси , так как угловой коэффициент есть тангенс угла наклона касательной к оси .

Поэтому мы находим на графике точки экстремума (точки максимума и минимума), – именно в них касательные к графику функции будут параллельны оси .


Таких точек – 4.

Задача 3.

На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.

Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой , имеющей угловой коэффициент , то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что в точках касания.

Поэтому смотрим, сколько точек на графике имеют ординату , равную .

Как видим, таких точек – четыре.

Задача 4.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых производная функции равна 0.


Решение:

Производная равна нулю в точках экстремума. У нас их 4:


Задача 5.

На рисунке изображён график функции и одиннадцать точек на оси абсцисс:. В скольких из этих точек производная функции отрицательна?


Решение:

На промежутках убывания функции её производная принимает отрицательные значения. А убывает функция в точках. Таких точек 4.

Задача 6.

На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .


Решение:

Точки экстремума – это точки максимума (-3, -1, 1) и точки минимума (-2, 0, 3).

Сумма точек экстремума: -3-1+1-2+0+3=-2.

Задача 7.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.

Решение:

На рисунке выделены промежутки, на которых производная функции неотрицательная.

На малом промежутке возрастания целых точек нет, на промежутке возрастания четыре целых значения : , , и .


Их сумма:

Задача 8.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.


Решение:

На рисунке выделены цветом все промежутки, на которых производная положительна, а значит сама функция возрастает на этих промежутках.


Длина наибольшего из них – 6.

Задача 9.

На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.


Решение:

Смотрим как ведет себя график на отрезке , а именно нас интересует только знак производной .


Знак производной на – минус, так как график на этом отрезке ниже оси .


На рисунке изображён график некоторой функции \(y=f(x)\). Функция \(F(x)=\frac{2}{3}x^3-20x^2+201x-\frac{5}{9}\) — одна из первообразных функции \(f(x)\). Найдите площадь закрашенной фигуры.

Ответ:

Задача №: 323383. Прототип №:
На рисунке изображён график некоторой функции \(y=f(x)\). Функция \(F(x)=-\frac{4}{9}x^3-\frac{34}{3}x^2-\frac{280}{3}x-\frac{18}{5}\) — одна из первообразных функции \(f(x)\). Найдите площадь закрашенной фигуры.

Ответ:

Задача №: 323385. Прототип №:
На рисунке изображён график некоторой функции \(y=f(x)\). Функция \(F(x)=-\frac{1}{6}x^3-\frac{17}{4}x^2-35x-\frac{5}{11}\) — одна из первообразных функции \(f(x)\). Найдите площадь закрашенной фигуры.

Ответ:

Задача №: 323387. Прототип №:
На рисунке изображён график некоторой функции \(y=f(x)\). Функция \(F(x)=-\frac{1}{5}x^3-\frac{9}{2}x^2-30x-\frac{11}{8}\) — одна из первообразных функции \(f(x)\). Найдите площадь закрашенной фигуры.

Ответ:

Задача №: 323389. Прототип №:
На рисунке изображён график некоторой функции \(y=f(x)\). Функция \(F(x)=-\frac{11}{30}x^3-\frac{33}{4}x^2-\frac{297}{5}x-\frac{1}{2}\) — одна из первообразных функции \(f(x)\). Найдите площадь закрашенной фигуры.

Ответ:

Задача №: 323391. Прототип №:
На рисунке изображён график некоторой функции \(y=f(x)\). Функция \(F(x)=-\frac{7}{27}x^3-\frac{35}{6}x^2-42x-\frac{7}{4}\) — одна из первообразных функции \(f(x)\). Найдите площадь закрашенной фигуры.

Ответ:

Задача №: 323393. Прототип №:
На рисунке изображён график некоторой функции \(y=f(x)\). Функция \(F(x)=-\frac{1}{4}x^3-\frac{21}{4}x^2-\frac{135}{4}x-\frac{13}{2}\) — одна из первообразных функции \(f(x)\). Найдите площадь закрашенной фигуры.

Ответ:

Задача №: 323395. Прототип №:
На рисунке изображён график некоторой функции \(y=f(x)\). Функция \(F(x)=-x^3-21x^2-144x-\frac{11}{4}\) — одна из первообразных функции \(f(x)\). Найдите площадь закрашенной фигуры.

Ответ:

Задача №: 323397. Прототип №:
На рисунке изображён график некоторой функции \(y=f(x)\). Функция \(F(x)=-\frac{5}{8}x^3-\frac{105}{8}x^2-90x-\frac{1}{2}\) — одна из первообразных функции \(f(x)\). Найдите площадь закрашенной фигуры.

Ответ:

Задача №: 323399. Прототип №:
На рисунке изображён график некоторой функции \(y=f(x)\). Функция \(F(x)=-\frac{1}{10}x^3-\frac{21}{10}x^2-\frac{72}{5}x-\frac{4}{3}\) — одна из первообразных функции \(f(x)\). Найдите площадь закрашенной фигуры.

Ответ:

Перейти к странице: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

Здравствуйте, друзья! В данной статье рассмотрим с вами задания на первообразную. Эти задания входят в ЕГЭ по математике. Несмотря на то, что сами разделы — дифференцирование и интегрирование довольно ёмки в курсе алгебры и требуют ответственного подхода к пониманию, но сами задачи, которые входят в открытый банк заданий по математике и будут на ЕГЭ чрезвычайно просты и решаются в одно-два действия.

Важно понять именно суть первообразной и в частности геометрический смысл интеграла. Рассмотрим кратко теоретические основы.

Геометрический смысл интеграла

Кратко об интеграле можно сказать так: интеграл – это площадь.

Определение: Пусть на координатной плоскости дан график положительной функции f, заданной на отрезке . Подграфиком (или криволинейной трапецией) называется фигура, ограниченная графиком функции f, прямыми х = а и х= b и осью абсцисс.

Определение: Пусть дана положительная функция f, определённая на конечном отрезке . Интегралом от функции f на отрезке называется площадь её подграфика.

Как уже сказано F′(x) = f (x). Какой можем сделать вывод?

Он простой. Нам нужно определить сколько имеется точек на данном графике, в которых F′(x) = 0. Мы знаем, что в тех точках, где касательная к графику функции параллельна оси ох. Покажем эти точки на интервале [–2;4]:

Это точки экстремума данной функции F (x). Их десять.

Ответ: 10

323078. На рисунке изображён график некоторой функции y = f (x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F (8) – F (2), где F (x) - одна из первообразных функции f (x).


Ещё раз запишем теорему Ньютона–Лейбница: Пусть f данная функция, F её произвольная первообразная. Тогда

А это, как уже сказано, есть площадь подграфика функции.

Таким образом, задача сводится к нахождению площади трапеции (интервал от 2 до 8):


Её не сложно вычислить по клеткам. Получаем 7. Знак положительный, так как фигура расположена выше оси ох (или в положительной полуплоскости оси оу).

Ещё в данном случае можно было сказать так: разность значений первообразных в точках есть площадь фигуры.

Ответ: 7

323079. На рисунке изображён график некоторой функции y = f (x). Функция F (x) = x 3 +30x 2 +302x–1,875 - одна из первообразных функции y= f (x). Найдите площадь закрашенной фигуры.


Как уже сказано о геометрическом смысле интеграла это есть площадь фигуры ограниченной графиком функции f (x), прямыми х = а и х = b и осью ox.

Теорема (Ньютона–Лейбница):

Таким образом, задача сводится к вычислению определённого интеграла данной функции на интервале от –11 до –9, или другими словами нам необходимо найти разность значений первообразных вычисленных в указанных точках:


Ответ: 6

323080. На рисунке изображён график некоторой функции y = f (x).

Функция F (x) = –x 3 –27x 2 –240x– 8 - одна из первообразных функции f (x). Найдите площадь закрашенной фигуры.


Теорема (Ньютона–Лейбница):

Задача сводится к вычислению определённого интеграла данной функции на интервале от –10 до –8:


Ответ: 4

Ещё одно решение данной задачи, с сайта .

Производные и правила дифференцирования ещё есть в . Знать их нужно обязательно, не только для решения таких заданий.

Также можете посмотреть справочную информацию на сайте и .

Посмотрите небольшой ролик, это отрывок из фильма «Невидимая сторона». Можно сказать, что это фильм об учёбе, о милосердии, о важности якобы «случайных» встреч в нашей жизни... Но этих слов будет недостаточно, рекомендую посмотреть сам фильм, очень рекомендую.

Успехов вам!

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.